If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(5x)^2=180
We move all terms to the left:
x^2+(5x)^2-(180)=0
We add all the numbers together, and all the variables
6x^2-180=0
a = 6; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·6·(-180)
Δ = 4320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4320}=\sqrt{144*30}=\sqrt{144}*\sqrt{30}=12\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{30}}{2*6}=\frac{0-12\sqrt{30}}{12} =-\frac{12\sqrt{30}}{12} =-\sqrt{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{30}}{2*6}=\frac{0+12\sqrt{30}}{12} =\frac{12\sqrt{30}}{12} =\sqrt{30} $
| 5x-9+17x+13=180 | | 4(m+5)=32 | | -9+2u=3u | | 17x+11=x | | 8−9(x+1)=9x+4 | | 7(w-84)=70 | | x-37/3=21 | | 18-3x=6x+12 | | 7(w−84)=70 | | 4(0.5y-0.25)=6+y | | 3=n+18/9 | | X^3+x=168 | | -3n-20=4(n+2) | | 19-g+6=-15+3g | | 4=p-49/10 | | -6r+1+1=-1-7r | | 3/2x-1/3x+6=8 | | 5p-8=3p+4 | | 3(n)-4=14 | | 7=6k+7k | | 2.4m=3.42=10.41+18.66+8.1m | | 7x+34=x | | 4x010=50= | | 5x+1+12x-8=180 | | -15-20-12t=-9t+19 | | t/10+40=48 | | -88/45=1/2r+2/5r | | 12v-16=-v+12v-4 | | 7x+34+10x-23=x | | 4k-18-8k=18-k | | s/4-1=4 | | 5y-9=2-5y |